AnyaRadosti | Дата: Четверг, 01.07.2021, 07:27 | Сообщение # 1 |
Принцесса
Группа: Амазонки
Сообщений: 133
Статус: Offline
| Астрономия же находила себе применение и в теории солнечных часов, и в математической географии. Древние египтяне знали, что Земля круглая и несется в пространстве, они внесли существенный вклад в астрономию, создав солнечный календарь. Календарь разделял год на три сезона по 4 месяца каждый. Тридцатидневный месяц делился на декады. В году было 36 декад, посвященных особым божествам, созвездиям. В конце года добавлялось 5 дней. Возникновение календаря также обусловливалось потребностями практической жизнедеятельности — важно было знать периодичность разлива Нила. Наблюдатели заметили, что разлив Нила знаменуется появлением на рассвете после долгого перерыва звезды Сириус. Однако они не привели в соответствие календарный и астрономический год, т.е. не учли високосные годы. Поэтому утренний восход Сириуса расходился с Новым годом на 1день. Через 120 лет эта ошибка стала очень ощутимой. Вместе с тем любопытно отметить, что даже Коперник использовал египетский календарь в лунной и планетной таблицах. Деление суток на 24 часа — тоже вклад египтян, но весьма своеобразный. Оно не похоже на современное, предполагающее равнозначность — 60-минутность — всех часов суток, что было впоследствии осуществлено под влиянием античной практики, соединенной с техникой вычисления. Египетский счет часов предполагал 10 часов дневных, 12 часов ночных и 2 часа сумеречных. В результате получалось 24 часа неравной продолжительности. Египтяне создавали карты неба, группировали созвездия, вели наблюдения за планетами. Изобретение календаря и элементов астрономии трудно переоценить. Все эти завоевания древнеегипетской цивилизации были щедрыми дарами для последующего развития культуры всех народов. Однако трудности в изучении египетских знаний объяснялись тем, что они были тайной, хранимой жрецами, которые строго следили, чтобы сокровенные знания о Вселенной и человеке держать втайне от профанов, но передавать их ученикам, посвященным. Об этом свидетельствуют отдельные фрагменты из «Книги мертвых», в которой строго запрещается совершать при свидетелях описываемые там церемонии, при них не могут присутствовать даже отец и сын покойника. Строго наказывалась каждая попытка завладеть магическими священными книгами, а тем более употреблять их для каких-либо целей. Этим объясняется и ставшее известным изречение древнеегипетский жрецов: «Все для народа, но через народ ничто». И.П. Шмелев делает предположение, что если в Древнем Египте жезлы были инструментами фиксации знания, то не указывает ли их геометрия на шифр, заложенный в самих жезлах? Сравнивая иероглифы и рисунки на уцелевших композициях комплекса древних панелей из захоронения древнеегипетского зодчего Хеси-Ра, можно получить аргументированные свидетельства того, что жезлы являются инструментами соразмерности, а следовательно, представление о них только как о символах знатности неполно. Впрочем, во многом неполна и недостаточна и сама версия о происхождении науки в собственном смысле слова в столь отдаленный период. Хотя аналогии возможны. Корпус посвященных весьма напоминает герметичность деятельности научных сообществ, вход в которые также закрыт для профанов. Принцип наставничества, научного руководства — действующий принцип в процессе подготовки научных кадров. Секретность полученных знаний — требование, весьма актуальное и по сей день с учетом последних разработок в сферах генетики и клонирования. И вся своеобразная система древнейших знаний, погребенная под толщей мистических иносказаний, интересна тем, что имеет тенденцию к воспроизведению и обнаружению своей значимости в новейших, парадоксальных открытиях информационных технологий. Версия 3 сообщает о возникновении науки в контексте поздней средневековой культуры. Иногда возникновение науки относят к периоду расцвета поздней средневековой культуры Западной Европы (XII-XIV вв.). В деятельности английского епископа Роберта Гроссетеста (1175-1253) и английского францисканского монаха Роджера Бэкона (ок. 1214-1292) была переосмыслена роль опытного знания. Знаменитый трактат Гроссетеста «О свете» лишен упоминаний о Боге, но изобилует ссылками на Аристотеля и его трактат «О небе». Гроссетест был комментатором «Первой аналитики» и «Физики» Аристотеля. Он широко использовал его категориальный аппарат. Медиевисты считают Гроссетеста пионером средневековой науки. Ему принадлежат также трактаты «О тепле Солнца», «О радуге», «О линиях угла и фигурах», «О цвете», «О сфере», «О движении небесных тел», «О кометах». Сопровождающее их математическое обоснование связано с символикой цифр: «Форма как наиболее простая и не сводимая ни к чему сущность приравнивается им к единице; материя, способная под влиянием формы изменяться, демонстрирует двойственную природу и потому выражается двойкой; свет как сочетание формы и материи — это тройка, а каждая сфера, состоящая их четырех элементов, есть четверка. Если все числа сложить, — пишет Гроссетест, — будет десять. Поэтому десять — это число, составляющее сферы универсума». Гроссетест описывает широко распространенный метод наблюдения за фактами, называя его резолюцией, обращается к методу дедукции, а соединение двух конечных результатов образует, по его мнению, метод композиции. Источники сообщают много удивительного о персоне Роджера Бэкона, в частности то, что он пытался смоделировать радугу в лабораторных условиях. Ему принадлежит идея подводной лодки, автомобиля и летательного аппарата. Он с огромной убеждающей силой призывал перейти от авторитетов к вещам, от мнений к источникам, от диалектических рассуждений к опыту, от трактатов к природе. Он стремился к количественным исследованиям, к всемерному распространению математики. Однако работы неортодоксального монаха-францисканца были сожжены, а сам он заточен в тюрьму. Типичный образ средневекового алхимика рисует его за неустанной работой в лабораторных условиях, где он проводит многочисленные опыты и ставит интересные эксперименты в целях добиться трансмутации металлов, отыскать философский камень, эликсир жизни. (Заметим, что смысл слова «эксперимент» не тождественен современному, а означает свойственные средневековым магам попытки или операции комбинирования отдельных единичных процессов.) В основу эликсира бралось искусственное золото, над получением которого так бились алхимики. Господствовало представление о том, что все металлы представляют собой неосуществленное золото, осуществлению которого требуется огромный период времени. Алхимик стремился ускорить процесс «созревания» золота с помощью нагревания раствора из свинца и ртути. Очень распространены были алхимические эксперименты над перегонкой киновари. При ее нагревании выделялась белая ртуть и красная сера. Такое сочетание цветов ассоциировалось со спермой отца и кровью матери. Киноварь, воспринимаемая как некое андрогенное начало, в миросозерцании средневековых алхимиков способствовала бессмертию. Средневековым символом алхимии была совокупляющаяся пара. Лабораторная алхимия разделяется на придворную и отшельническую. Придворная больше была склонна к механическому достижению эффекта. Отшельническая связывала эффект с необходимостью очищения и медитативными практиками. Вместе с тем имеются сведения, что реальное применение алхимических препаратов, в частности эликсиров жизни, были крайне негативными. В них входили ядовитые вещества — ртуть, мышьяк, свинец. Они вызывали сильные формы отравлений, галлюцинаций, кожной сыпи и других болезненных проявлений. Поэтому неудивительно, что алхимиков преследовали и часто казнили. Хотя положительная часть средневековой алхимии закрепила себя в трактатах по фармакологии. Алхимические же эксперименты над собственной духовной сферой, так называемая трансмутация души, также была сопряжена со многими опасностями. Ей сопутствовало не только желательное развитие паранормальных способностей, но и серьезные психосоматические расстройства. Средневековье знало семь свободных искусств — триумвиум: грамматика, диалектика, риторика; квадриум: арифметика, геометрия, астрономия, музыка. Каждый ученый был обязан владеть всеми этими науками-искусствами. В XII—XIII вв. были известны тексты арабоязычных ученых, посвященные естественнонаучным изысканиям, широко употреблялись арабские цифры. Но в науке господствовал схоластический метод с его необходимым компонентом — цитированием авторитетов, что лишало первостепенной значимости задачу по исследованию естества, фюзис, Природы. Когда проводят компаративистский (сравнительный) анализ средневековой науки с наукой Нового времени, то основное отличие видят в изменении роли индукции и дедукции. Средневековая наука, следуя линии Аристотеля, придерживалась дедукции и оперировала путем заключений из общих принципов к отдельным фактам, тогда как новая наука (после 1600 г.) начинает с наблюдаемых отдельных фактов и приходит к общим принципам с помощью метода индукции. Дедукцию истолковывают иногда и как процесс нисхождения, который начинается от чего-то наиболее общего, фундаментального и первичного и растекается на все остальное. В такой интерпретации весьма узнаваемо сходство дедукции и эманации, предполагающей истечение из лона порождающего характеристик, особенностей и сущностей более простого порядка. В рамках же официальной доктрины средневековья главенствуют вера и истины откровения. Разум теряет роль главного арбитра в вопросах истины, ликвидируется самостоятельность природы, Бог, благодаря своему всемогуществу, может действовать и вопреки естественному порядку. Теологическая ориентация средневековья очень хорошо прослеживается в текстуальном анализе идей великих мыслителей того времени. Так, в высказывании Тертуллиана (ок. 160 — после 220) отмечается: «...напрасны потуги философов, причем именно тех, которые направляют неразумную любознательность на предметы природы прежде, чем на ее Творца и Повелителя...». Ведь «философы только стремятся к истине, особенно недоступной в этом веке, христиане же владеют ею. <...> Ибо с самого начала философы уклонились от источника мудрости, т.е. страха Божьего». Истина оказывалась в полном ведении Божества, так что «христиане должны остерегаться тех, кто философствует сообразно стихиям мира сего, а не сообразно Богу, которым сотворен сам мир», — подчеркивал Августин. Средневековье пестрило многообразными аргументами и подходами, опровергавшими возможность истинного познания природы вне божественного откровения. Считалось, что знание, перерастающее в науку, — это разумное познание, позволяющее нам пользоваться вещами. Науку необходимо подчинять мудрости, доступной лишь божественному разуму. Говоря о философах, Августин пишет: «Они твердили: «истина, истина» и много твердили мне о ней, но ее нигде у них не было. Они ложно учили не только о Тебе, который есть воистину Истина, но и об элементах мира, созданного тобой...» В особом, преимущественном положении находилась логика, ибо, как справедливо полагал Боэций, «всякий, кто возьмется за исследование природы вещей, не усвоив прежде науки рассуждения, не минует ошибок... Таким образом, размышления о логике заставляют прийти к выводу, что этой столь замечательной науке нужно посвятить все силы ума, чтобы укрепиться в умении правильно рассуждать: только после этого сможем мы перейти к достоверному познанию самих вещей». Он понимал логику как рациональную философию, которая служит средством и орудием и с помощью которой получают знание о природе вещей. Логику как науку о доказательстве в рассуждениях ценил очень высоко Пьер Абеляр, утверждавший, что наука логики имеет большое значение для всякого рода вопросов и что первым ключом мудрости является частое вопрошание. Пожалуй, в окончательном виде кредо средневековья было сформулировано пером Фомы Аквинского: «...необходимо, чтобы философские дисциплины, которые получают свое знание от разума, были дополнены наукой, священной и основанной на откровении. <...> Священное учение есть такая наука, которая зиждется на основоположениях, выясненных иной, высшей наукой; последняя есть то знание, которым обладает Бог, а также те, кто удостоен блаженства... Эта наука— теология, к другим наукам она прибегает как к подчиненным ей служанкам». Таким образом, в средневековье оформился специфический и решающий критерий истинности, а именно ссылка на авторитет, которым в контексте средневековой культуры был Бог. Начало эпохи Возрождения было отмечено подъемом интереса к математике. Известна, например, «Сумма арифметики, геометрии, пропорции и пропорциональности» флорентийского математика Луки Пачоли (ок. 1445 — позже 1509). В ней автор подводил итог всему математическому знанию, а также с новой силой утверждал тезис античного математика Филолая и других пифагорейцев о том, что математика отражает всеобщую закономерность, применяемую ко всем вещам. П. Гайденко оценивает средневековую науку так: «...научное знание в средние века имеет характерные особенности. Прежде всего оно выступает как правила, в форме комментария. <...> Второй особенностью средневековой науки является тенденция к систематизации и классификации. Именно средневековье с его склонностью к классификации наложило свою печать и на те произведения античной науки и философии, которые были признаны каноническими в средние века. <...> Компиляторство, столь чуждое и неприемлемое для науки Нового времени, составляет как раз весьма характерную черту средневековой науки, связанную с общей мировоззренческой и культурной атмосферой этой эпохи". Появляется феноменальный принцип двойственности истины, он указывает на две принципиально разные картины мира: теолога и натурфилософа. Первая связывает истину с божественным откровением, вторая — с естественным разумом, базируется на опыте и пользуется индукцией. Как отмечает В. Соколов, тогдашняя наука сосредоточивалась в двух почти не связанных друг с другом организациях. Одной из них были университеты и некоторые школы, существовавшие уже не один век. Другой можно считать опытно-экспериментальное исследование природы, которое сосредоточилось в мастерских живописцев, скульпторов, архитекторов. Практика создания предметов искусства толкала их на путь экспериментирования. Иногда эта практика требовала соединения логики мастерства с математикой. Великий живописец Леонардо да Винчи по праву завоевал имя пионера современного естествознания. Его исследовательская деятельность охватывала собой области механики, физики, астрономии, геологии, ботаники, анатомии и физиологии человека. Леонардо подчеркивал безошибочность опыта и стремился к точному уяснению его роли в деле достижения истины. Он указывал, что опыт есть то минимальное условие, при котором возможно истинное познание. Леонардо ориентировался на спонтанное экспериментирование, которое осуществлялось в многочисленных мастерских. Его широко известная фраза: «Наука — полководец, а практика — солдаты», — говорила о том, что наука не сводится только к опыту и экспериментированию, а включает в себя нечто большее потребность осмысленного обобщения данных опыта. Интересно, что механика мыслится им не как теоретическая наука, какой она впоследствии станет во времена Галилея и Ньютона, а как чисто прикладное искусство конструирования различных машин и устройств. Можно присоединиться к мнению В. Соколова о том, что именно Леонардо подошел к необходимости органического соединения, единства эксперимента и его математического осмысления, которое и составляет суть того, что в дальнейшем назовут современным естествознанием. Постепенное проникновение естественно-научного взгляда на мир подготовило появление классической науки. Версия 4 наиболее традиционная. Она датирует рождение науки Нового времени в обще употребляемом европейском смысле слова XVI— началом XVII в., делая точкой отсчета систему Коперника, так называемый коперниканскии переворот, а также законы классической механики и научную картину мира, основанную на достижениях Галилея и Ньютона. Польский астроном Николай Коперник (1491-1496) учился в Краковском университете. Затем приехал в Италию для постижения основ астрономии, медицины, философии и права, где изучил древнегреческий язык и космогонические идеи древних авторов. Он рано пришел к убеждению о ложности теории Аристотеля—Птолемея и в своем небольшом произведении «Очерк нового механизма мира» (1505—1507) попытался математически конкретизировать свою идею. Главным делом его жизни был труд «Об обращениях небесных сфер», который был издан после его смерти. В нем Коперник предложил гелиоцентрическую систему мира. С момента провозглашения его идеи, заключающейся в том, что разработанная система позволяет «с достаточной верностью объяснить ход мировой машины, созданной лучшим и любящим порядок Зодчим», можно вести отсчет рождения детерминистическо-механистического мировоззрения в его противоположности телеологическо-организмическому. Земля оказалась не привилегированной, а «рядовой» планетой, закономерности которой могли быть обнаружены на всем громадном ее протяжении. Таким образом, согласно этой позиции наука очень молода, ее возраст чуть более 400 лет. «XVI век н.э. увидел крушение западного христианства и рождение современной науки», — подчеркивал А. Уайтхед в работе «Наука и современный мир». Развитие науки придало новую окраску человеческому сознанию и породило новизну способов мышления. «Новое мышление явилось более важным событием, чем даже новая наука или техника. Оно изменило метафизические предпосылки и образное содержание нашего сознания, так что теперь старые стимулы вызывали новый отклик». О греческих изысканиях Уайтхед отзывался так: «Их чрезмерно интересовала математика. Они изобрели ее основоположения, анализировали ее предпосылки, открыли замечательные теоремы благодаря строгой приверженности дедуктивному рассуждению. Их умы увлекала страсть к обобщению. Они требовали ясных и смелых идей и строгих умозаключений из них. Это было совершенство, это был гений, это была идеальная подготовительная работа. Но это еще не было наукой в нашем понимании». В аристотелевской и схоластической традиции изложение науки основывалось на схеме, состоящей из двух элементов (диадической схеме): действительность, объективный мир — и картина этого мира, создаваемая учеными. Истина означала согласие человеческого интеллекта с вещами действительного мира. Иногда индукция понималась как то, что позволяет на основе «материала наблюдений» строить структуру лингвистического материала. Работа, связанная с созданием кратких изящных аналитических выражений, является существенной частью успеха науки. Поэтому наука стала пониматься на основе триптической схемы: наблюдаемый объект, творящий ученый и третий элемент— знаки, которыми ученый изображает картину мира. (Впоследствии логические позитивисты акцентировали именно связь второго и третьего элементов, т.е. отношение между физическими объектами и знаками, или символами. Результат этого соотношения был назван семантическим качеством науки. Отношения же между членами третьего необходимого элемента науки — знаками — составляют логический компонент.) Существует мнение, что история индуктивных наук есть история открытий, а философия индуктивных наук— история идей и концепций. Наблюдая однообразие в природе, мы приходим с помощью индукции к утверждению естественных законов. Эмпиризм и математическое обобщение стали визитной карточкой науки Нового времени. От имени эмпиризма выступил Фрэнсис Бэкон с его обширной программой эмпирической философии. От имени рационалистического подхода выступил математик Рене Декарт. Впрочем, Гарвей высказался о родоначальнике английского эмпиризма так: «Бэкон занимался наукой как лорд-канцлер». Видимо, имеется в виду, что дело ограничивалось одними только пожеланиями, общей характеристикой задачи и увещеваниями о том, что не следует доверяться случайным восприятиям, а нужно производить методические наблюдения и дополнять их обдуманным опытом. Декарт же был уверен, что серьезная потребность в истине может быть удовлетворена не схоластическими рассуждениями и метафизическими теориями, а исключительно математикой. Эта своеобразная математическая реформа философии заставила признать ясность и отчетливость важнейшими принципами научного метода. Они влекут за собой необходимость количественных определений, тогда как качественные, основанные на чувственном восприятии, по сути своей неясны и смутны. Обычно называют 1662г., год образования Лондонского королевского общества естествоиспытателей, утвержденного Королевской хартией, как дату рождения науки. В 1666г. в Париже появляется Академия наук. Лондонское королевское общество объединяет ученых-любителей в добровольную организацию, устав которой был сформулирован Робертом Гуком. В нем было записано, что цель общества — «совершенствование знания о естественных предметах, всех полезных искусствах с помощью экспериментов (не вмешиваясь в богословие, метафизику, мораль, политику, грамматику, риторику или логику»). Королевское общество стремилось поддерживать экзальтированный эмпиризм. Работы, выполненные но другим нормам, отвергались. «Вы не можете не знать, — так звучал отказ одному из авторов, — что целью данного Королевского института является продвижение естественного знания в помощью экспериментов и в рамках этой цели среди других занятий его члены приглашают всех способных людей, где бы они ни находились, изучать Книгу Природы, а не писания остроумных людей». В XVII в. обозначилась новая роль естествоиспытателя — испытующего естество и уверенного, что божественная «Книга Природы» (метафора, унаследованная из теологии) написана на языке геометрии (Галилей). Ученые галилеевского типа настроены на рациональное прочтение книги природы. «...Хотя к 1500 г. Европа не обладала даже уровнем знаний Архимеда, умершего в 212г. до н.э., все же в 1700г. «Начала» Ньютона были уже написаны, и мир вступил в современную эпоху, — делал вывод Уайтхед. Главным достоянием Нового времени считается становление научного способа мышления, характеризующегося соединением эксперимента как метода изучения природы с математическим методом, и формирование теоретического естествознания. И Галилей, и Декарт были уверены, что позади чувственных феноменов стоят математические законы. Интерес к решающему эксперименту был «платой за застывшую рациональность средневековой мысли». Достаточно напомнить тот факт, что галилеевский принцип инерции получен с помощью идеального эксперимента. Галилей формулирует парадоксальный образ — движение по бесконечно большой окружности при допущении, что она тождественна бесконечной прямой, а затем осуществляет алгебраические исследования. И во всех интересных случаях фиксируется либо противоречие, либо несоответствие теоретических идеализации и обыденного опыта, теоретической конструкции и непосредственного наблюдения. Поэтому суть научно-теоретического мышления начинает связываться с поиском предметов-посредников, видоизменением наблюдаемых условий, ассимиляцией эмпирического материала и созданием иной научной предметности, не встречающейся в готовом виде. Теоретическая идеализация, теоретический конструкт становится постоянным членом в арсенале средств строгого естествознания. Примерами таких конструктов могут служить понятия математической точки, числа, таблицы, графы, абстрактные автоматы и т.п. К многообразным приметам возникновения науки относят рост благосостояния и досуга, распространение университетов, изобретение книгопечатания, захват Константинополя, появление Коперника, Васко да Гамы, Колумба, телескопа. Хроника той гениальной эпохи любопытна. Ссылаясь на А. Уайтхеда, заметим, что в начале XVII в., в 1605г., выходят «О достоинстве и приумножении наук» Бэкона и «Дон Кихот» Сервантеса. Годом раньше увидело свет первое издание «Гамлета». Сервантес и Шекспир умирают в один день — 23 апреля 1616 г. Весной того же года Гарвей в Лондонском врачебном колледже представил свою теорию циркуляции крови. В год смерти Галилея родился Ньютон (1642), почти 100 лет спустя после опубликования копернианского «Об обращении небесных сфер». Годом раньше Декарт публикует свои «Метафизические размышления», а двумя годами позже — «Первоначала философии». У истоков новой европейской науки стоят имена Ф. Бэкона, Гарвея, Кеплера, Галилея, Декарта, Паскаля, Гюйгенса, Бойля, Ньютона, Локка, Спинозы, Лейбница. «Современная наука рождена в Европе, но дом ее — весь мир», — так резюмировал процесс бурного роста научных технологий А. Уайтхед. Версия5 обсуждает проблему исторического возраста науки с привлечением классификации, когда данный феномен представлен двумя стадиями своего становления, а именно преднаукой и собственно наукой. Зарождающаяся наука во многом опирается на результаты каждодневного практического опыта, обыденное знание, наблюдения и приметы. Оперирование реальными предметами послужило непосредственной основой для возникновения идеального плана познания, действий с идеальными объектами. На этапе собственно науки, к примеру математики, числа уже не рассматриваются как прообразы предметных совокупностей. Они выступают как самостоятельные символические объекты. И когда появляются теоретические возможности, связанные с превышением сложившихся стереотипов практики, когда эмпирические зависимости строятся и получаются не сугубо практически, а как следствие теоретических постулатов, исследователи фиксируют возникновение стадии собственно науки. Знания предстают не как суммарный исход практических операций, но как рецептура действия с точки зрения всеобщего и необходимого. Следовательно, демаркация между наукой и преднаукой проходит по линии формирования предпосылок научно-теоретического способа исследования. Преднаука — это обобщение эмпирических ситуаций, предписания для практики. Наука— это возникновение научного метода, соединяющего математику с экспериментом. Эвристические и прогностические компоненты научного исследования также свидетельствуют о возникновении собственно науки.
мир украсит улыбка
Сообщение отредактировал AnyaRadosti - Четверг, 01.07.2021, 09:01 |
|
| |